EDN: YBBGEY
Authors & Affiliations
Alekseev V.V., Sorokin A.P., Kuzina Yu.A.
A.I. Leypunsky Institute for Physics and Power Engineering, Obninsk, Russia
Alekseev V.V. – Chief Researcher, Dr. Sci. (Tech.). Contacts: 1, pl. Bondarenko, Obninsk, Kaluga region, Russia, 249033. Tel. (484) 399-70-00 (доб. 42-34); e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it..
Sorokin A. P. – Chief Researcher, Dr. Sci. (Tech.).
Kuzina Yu.A. – Head of Division, Dr. Sci. (Tech.).
Abstract
A mathematical description of homogeneous and heterogeneous mass transfer of stainless steel corrosion products in sodium circuits is proposed. An experimental determination of the constants characterizing mass transfer at low and high oxygen content in sodium is performed. Experiments on the deposition of corrosion products in a cooled channel with different hydrogen content in sodium show that chromium transfer does not depend on the hydrogen content in sodium at a concentration of 6 ppm and less. At the same time, the effect of hydrogen on nickel transfer is noted. A comparison of corrosion product flux onto the channel walls is performed for different oxygen contents in sodium: 140, 80, 5 ppm. At 730–750 °C, the corrosion product flux onto the channel surface is practically independent of oxygen concentration in the considered concentration range and is about 3 10–8 kg/(m2·s), which can be associated with the decomposition of chromium oxides in this temperature range. With increasing concentration of oxygen in sodium, the flux of corrosion products to the channel surface increases in the range of 600–730 °C. With decreasing sodium temperature below 600 °C and relatively low oxygen content, the flow of deposits to the channel walls increases due to increased crystallization of the dissolved component of corrosion products. Considering the danger of possible disorder of the thermal-hydraulic characteristics of sodium circuits caused by mass transfer of corrosion products, the obtained data can be especially useful for ensuring trouble-free operation of high-temperature nuclear installations.
Keywords
sodium, chromium-nickel steel, corrosion products, chromium oxide, mass transfer, temperature, saturation concentration, oxygen, hydrogen, dispersed system, kinetic equation of coagulation, mass transfer constant
Article Text (PDF, in Russian)
References
- Poplavskii V.M., Tsibulya A.M., Kamaev A.A., Bagdasarov Yu.E., Krivitskii I.Yu., Matveev V.I., Vasil'ev B.A., Budyl'skii A.D., Kamanin Yu.L., Kuzavkov N.G., Timofeev A.V., Shkarin V.I., Suknev K.L., Ershov V.N., Popov S.V., Znamenskii S.G., Denisov V.V., Karsonov V.I. Prospects for the BN-1800 Sodium-Cooled Fast Reactor Satisfying 21st Century Nuclear Power Requirements. Atomic Energy, 2004, vol. 96, issue 5, pp. 308–314. DOI: https://doi.org/10.1023/B:ATEN.0000038095.24870.58.
- Alekseev V.V., Sorokin A.P., Kuzina Yu.A. Estimates of tritium mass transfer in a NPP with fast sodium cooled reactor and carnotized gas turbine in the second circuit [Otsenki massoperenosa tritiya v AES s bystrym natriyokhlazhdaemym reaktorom i karnotizirovannoy gazoturbinnoy ustanovkoy vo vtorom konture]. Voprosy atomnoy nauki i tekhniki. Seriya: Yaderno-reaktornye konstanty – Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2022, issue 3, pp. 206–212.
- Poplavskii V.M., Zabud’ko A.N., Petrov É.E., Ovcharenko M.K., Popov V.V., Bogush V.B., Loginov N.I., Tarasov V.A., Polevoi V.B., Khoromskii V.A., Mikheev A.S. Physical characteristics and problems of developing a sodium-cooled fast reactor as a source of high-potential thermal energy for hydrogen production and other high-temperature technologies. At Energy, 2009, vol. 106, issue 3, pp. 162–167. DOI: https://doi.org/10.1007/s10512-009-9147-9.
- Sorokin A.P., Alekseev V.V., Ivanov A.P., Kuzina Yu.A. Issledovaniya vysokotemperatur-noy energotekhnologii s reaktorom na bystrykh neytronakh dlya proizvodstva vodoroda [Research of high-temperature energy technology with a fast neutron reactor for hydrogen production]. Moscow, ООО AP “Stolitsa” Publ., 2022. 258 с. ISBN 978-5-6048556-7-6.
- Alekseev V.V. Massoperenos tritiya i produktov korrozii konstruktsionnykh materialov v konturakh s natrievym teplonositelem. Diss. dr. tekh. nauk [Mass transfer of tritium and corrosion products of structural materials in circuits with sodium coolant. Diss. dr. tech. sci.]. Obninsk, IPPE, 2002.
- Kondratyev A.S. Massoperenos produktov korrozii s uchetom khimicheskogo vzaimodeystviya v sisteme natriy – konstruktsionnyy material – primesi. Diss. kand. tekh. nauk [Mass transfer of corrosion products taking into account chemical interaction in the sodium – structural material – impurities system. Diss. cand. tech. sci.].Obninsk, IPPE, 2010.
- Voloshchuk V.M. Kineticheskaya teoriya koagulyatsii [Kinetic theory of coagulation]. Leningrad, Gidrometeoizdat Publ., 1984. 284 p.
- Alekseev V.V., Kozlov F.A., Zagorulko Yu.I. et al. Issledovanie dinamiki povedeniya vzvesey v natrievykh konturakh bystrykh reaktorov [Study of dynamics of behavior of suspensions in sodium loops of fast reactors]. Preprint FEI-2576 – Preprint IPPE-2576. Obninsk, FEI, 1996. 16 p.
- Nicholas M.G., Cavell I.W. Materials Development Division, A.E.R.E. Proc. Second Int. Conf. on Liquid Metal Technology in Energy Production. Richland, April 20–24, 1980, pp. 3-35–3-41.
- Alekseev V.V., Kondratyev A.S. Modelirovanie massoperenosa produktov korrozii v konturakh YaEU s natrievym teplonositelem [Modeling of mass transfer of corrosion products in the circuits of nuclear power plants with sodium coolant]. Izvestiya vuzov. Yadernaya energetika, 2010, no. 4, pp. 162–171.
- Alekseev V.V., Kozlov F.A., Sorokin A.P. et al. Eksperimental'noe izuchenie fundamental'nykh fiziko-khimicheskikh zakonomernostey massoobmena v vysokotemperaturnoy neizotermicheskoy sisteme konstruktsionnye materialy-natriy-primesi na natrievom stende. Nauchno-tekhnicheskiy sbornik “Itogi nauchno-tekhnicheskoy deyatel'nosti Instituta yadernykh reaktorov i teplofiziki za 2012 god” [Experimental study of fundamental physicochemical laws of mass transfer in a high-temperature nonisothermal system of structural materials-sodium-impurities on a sodium stand. Scientific and technical collection “Results of scientific and technical activities of the Institute of Nuclear Reactors and Thermal Physics for 2012”]. Obninsk: GNTs RF – FEI Publ., 2013. Pp. 212–224.
- Kozlov F.A., Alekseev V.V., Sorokin A.P. Development of Sodium Coolant Technology for Fast Reactors. At Energy, 2014, vol. 116, issue 4, pp. 278–284. DOI: https://doi.org/10.1007/s10512-014-9854-8.
- Kraev N.D. Korroziya i massoperenos konstruktsionnykh materialov v natrievom i natriy-kalievom teplonositelyakh [Corrosion and mass transfer of structural materials in sodium and sodium-potassium coolants]. Izvestiya vuzov. Yadernaya energetika, 1999, no. 3, pp. 40–48.
UDC 621.039.534
Problems of Atomic Science and Technology. Series: Nuclear and Reactor Constants, 2025, no. 4, 4:14